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ABSTRACT

EXTENSIBLE PRE-AUTHENTICATION IN KERBEROS

Phillip Hellewell

Department of Computer Science

Master of Science

Organizations need to provide services to a wide range of people, including strangers

outside their local security domain. As the number of users grows larger, it becomes

increasingly tedious to maintain and provision user accounts. It remains an open

problem to create a system for provisioning outsiders that is secure, flexible, efficient,

scalable, and easy to manage.

Kerberos is a secure, industry-standard protocol. Currently, Kerberos operates

as a closed system; all users must be specified upfront and managed on an individual

basis. This paper presents EPAK (Extensible Pre-Authentication in Kerberos), a

framework that enables Kerberos to operate as an open system. Implemented as a

Kerberos extension, EPAK enables many authentication schemes to be loosely cou-

pled with Kerberos, without further modification to Kerberos. EPAK provides the

mutual benefits of enhancing the flexibility of Kerberos and increasing the viability

of alternate authentication systems as they move to the enterprise.
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Chapter 1 — Introduction

Open systems allow the authentication of users who are outside the local security

domain and do not have a pre-existing relationship with the authentication server.

To provide sufficient scalability, the system can employ attribute-based access con-

trol for mapping groups of users to role(s). The RT framework [17] is an example

of such a system.

Kerberos has met the security demands of many businesses, but managing Ker-

beros grows more difficult as outside users become involved. Open system authenti-

cation systems address this by relying on third parties to manage users, passwords,

keys, and other credentials. An authentication server trusts third parties to validate

users.

Adopting new authentication schemes to replace Kerberos may be prohibitive

because access control systems and applications are often built up around the Ker-

beros infrastructure. For example, Microsoft’s Active Directory is a well-established,

enterprise-level authorization system built around Kerberos. Extending Kerberos

provides an attractive solution that allows systems like Active Directory to remain

intact.

Incorporating open system authentication into Kerberos enhances the flexibility

of Kerberos while increasing the usefulness and adoption of open systems. Kerberos

becomes more powerful as it leverages open systems to provide services to more peo-

ple, and open systems become more practical as they merge into existing Kerberos

infrastructures.

After a motivating scenario described below, Chapter 2 gives a background of

Kerberos. Then Chapters 3 to 5 describe the design and implementation of EPAK

1



CHAPTER 1. INTRODUCTION

and two EPAK-based protocols that enable Kerberos to operate as an open system.

Chapter 6 contains a threat analysis of EPAK and Chapters 7 and 8 give related

work, conclusions, and future work.

Motivating Scenario Suppose Company A desires to create a collaborative file-

sharing service accessible to the employees of Company B. It would also like to

leverage its existing security infrastructure (e.g., Active Directory) to manage users.

Rather than manage accounts for each employee of Company B, Company A would

like to group them all into a local user employeeB.

At the same time, Company A wishes to grant Company C read-only access

to the file sharing site to monitor the work in progress but not make any changes.

Employees from Company C could be mapped to the local user employeeC.

What if employees from Company B and C could be authenticated to Company

A’s domain merely by proving ownership of their email address? Company A could

grant and remove access to outsiders simply by adding and removing entries from an

access control list (ACL) that maps email addresses to local users. To provide the

scalability needed for an open system, the ACL could allow wildcards for grouping

addresses together (e.g., *@companyB.com).

2



Chapter 2 — Kerberos

Kerberos [22] is a distributed, identity-based authentication system that provides a

method for a user to gain access to an application server. Kerberos allows a user

to authenticate once and then connect to servers within the realm of the Kerberos

network, without authenticating again for a period of time.

Kerberos is time-tested and widely used. Version 5 was standardized over a

decade ago [22], and is in use by many enterprises today. It is used in business, gov-

ernment, military, and educational institutions, including those that use Microsoft

Windows Server as a domain controller [19].

The Kerberos server consists of an Authentication Server (AS) and a Ticket-

Granting Server (TGS). The AS and TGS are responsible for creating and issuing

tickets to the clients upon request. The AS and TGS usually run on the same

computer, and are collectively known as the Key Distribution Center (KDC).

The Kerberos authentication process works in three phases (see Figure 2.1). In

the first phase, the client sends an AS-REQ with the user name to the AS, which

responds with an AS-REP that includes a ticket-granting ticket (TGT) and a session

key. The session key can only be unlocked by the user’s password, and is required

for the second phase. In the second phase, the client sends a TGS-REQ with the

TGT from phase 1 to the TGS, which responds with a service-granting ticket (SGT)

in the TGS-REP. In the final phase, the SGT is presented to the application server,

which then grants the service.

Users and servers have names called principals [27]. Server principals are com-

posed of a primary name, instance, and a realm, written as name/instance@REALM.

Client principals, e.g., name@REALM, do not have an instance.

3



CHAPTER 2. KERBEROS

KDC

AS TGS

Cl ien t A p p l .  S e r v e r

Figure 2.1: The Kerberos protocol. To access a service, the client first requests a

ticket-granting ticket (TGT) from the Authentication Server (AS) in phase 1. This

phase is also known as AS authentication. The client then uses that ticket to obtain

a service-granting ticket from the Ticket-Granting Server (TGS) in phase 2. Finally,

the client presents the service-granting ticket to the application server to access the

service (phase 3).
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A Kerberos server (KDC) must maintain several secret keys. A single key, Ktgs,

is used to encrypt the TGT returned in step 1b (see Figure 2.1). Several keys, Kcx ,

one for each client, are used to encrypt the session key, also returned in step 1b.

Finally, several keys, Kvx , one for each server, are used to encrypt the SGT returned

in step 2b.

When the AS and TGS are combined, Ktgs can be stored in a private database

used only by the KDC. The client keys, Kcx can also be stored in the private

database, because only the AS needs direct access to them (clients derive the key

from their password).

However, the server keys must be shared between the Kerberos server and

application servers. For example, an ftp daemon service will need access to the

ftp/fqdn@REALM key so that it can decrypt the SGT sent in step 3a, encrypted

by the TGS in step 2b. In Heimdal and MIT Kerberos, popular open-source imple-

mentations of Kerberos, shared keys are stored in a keytab file called krb5.keytab,

which has strict permissions for read/write access to the admin (root) user only.

A credential cache on a client machine stores tickets obtained by a user, such

as the TGT and SGTs. Each credential includes a client principal, server principal,

encrypted ticket (opaque to the user) and a session key that matches the session

key hidden inside the ticket. The credential cache must be secured to prevent im-

personation. Heimdal Kerberos secures credentials by storing them in a temporary

file, /tmp/krb5cc $UID, which has read/write permissions only for the user who

obtained the credential. Other implementations, e.g., Microsoft’s, store credentials

in memory for greater security.
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CHAPTER 2. KERBEROS

2.1 Pre-Authentication

Kerberos version 5 introduces a pre-authentication mechanism that allows a

client to prove its authenticity before being issued a TGT. A pre-authentication data

(padata) field in the AS request is set to a value that proves the client’s authenticity,

such as a timestamp encrypted with the user’s password-based key (a mechanism

enabled by default on MIT and Windows 2000/2003 implementations). When pre-

authentication is mandated by the AS, it prevents an attacker from obtaining an

AS reply at will for any user and performing an offline dictionary attack against the

encrypted data.

Many different pre-authentication mechanisms may be used, such as smart cards

or public keys. For example, PKINIT [33] sends a timestamp encrypted with the

user’s private key. More padata types are defined in the Kerberos RFC [22].

2.2 Security Features

Kerberos has several important security features. User’s passwords are never

communicated over the network, and session keys are used to communicate securely

between the client and the Kerberos server and between the client and the appli-

cation server. These session keys are always communicated in an encrypted form.

In addition, the session key between the client program and the application server

may be used for secure communication after the protocol has finished.

Kerberos is also stateless [10]. Session keys are included inside messages, and

do not have to be maintained by Kerberos servers. This statelessness increases

scalability.

Single sign-on (SSO) is another important feature of Kerberos. With SSO, a

user’s password must only be entered once per session. The TGT and session key

obtained in phase 1 are saved, so each time the user wants to gain access to a service,

6



2.3. AUTHENTICATION AND AUTHORIZATION

only phases 2 and 3 are performed. This feature provides convenience, efficiency,

and added security.

Some authentication systems enable SSO via automation in their implementa-

tion. For example, a user’s password may be remembered and provided automat-

ically during authentication. That technique adds convenience, but not efficiency.

Such a system can still benefit from the SSO afforded by incorporation into Ker-

beros.

2.3 Authentication and Authorization

Although Kerberos is often described as an authentication and authorization

protocol, it “does not, by itself, provide authorization” [22]. It does provide a

mechanism whereby authorization information can be embedded into a Kerberos

ticket in an authorization-data field [22], but not all implementations support this

field.

In addition, since the authorization-data field contains data “specific to the end

service” [22], a lack of interoperability may arise between Kerberos authentica-

tion servers and application servers that do not understand the same authorization

data. The Windows 2000 implementation of Kerberos suffers from this incompati-

bility [16].

Although this paper deals primarily with authentication, the authorization mech-

anisms commonly built around Kerberos affect how we must design the authenti-

cation protocol so that the overall system remains usable. Our goal is to pursue a

design that will not obligate changes to authorization mechanisms.

2.4 Cross-Realm Authentication

Kerberos currently provides a mechanism for cross-realm authentication that

enables an authenticated user in one realm to obtain services in another realm, but

7



CHAPTER 2. KERBEROS

cross-realm authentication does not scale well. It requires each realm to mutually

trust each other, and to share a secret key. For N realms, there must be N(N−1)/2

shared keys [26](p. 94).

Public key extensions to Kerberos such as PKDA [25] improve scalability by

eliminating the need to establish such a large number of shared secrets [10]. Un-

fortunately, even with public-key-enabled Kerberos, a user in one realm must be

provisioned explicitly in another realm to gain access to certain services. The au-

thorization systems built around Kerberos usually require known principals for any

level of access.

2.5 Limitations

Conventional Kerberos fails to operate as an open system because every user

must be known a priori. A shared secret between the AS and the user (a password-

derived key) must be maintained by the AS, and each user has a 1-to-1 mapping

with a principal name.

Most Kerberos extensions are not designed to make Kerberos operate as an

open system. Extensions such as PKINIT [33] and other public-key extensions (see

Chapter 7) extend credential management to third parties (trusted CAs), but the

third parties usually cooperate directly with the Kerberos administrator in creating

certificates with principal names that exist in the Kerberos database.

Our goal is to extend Kerberos to be an open authentication system, but modi-

fying Kerberos for each new authentication type is burdensome. Traditionally, new

authentication types go through an approval process by the standardizing commit-

tee. Once defined, extensions are often rigid and cannot be updated without being

re-approved and assigned new pre-auth type numbers. PKINIT has undergone this

process.

8



2.5. LIMITATIONS

One might wish to incorporate a proprietary extension into Kerberos without

involving the standardization process, but this can be difficult or even impossible

when the source code is not available (e.g., Microsoft’s implementation). Even when

the source code is available, continual resources must be expended to maintain a

patch against the latest version of the Kerberos source code.

9
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Chapter 3 — EPAK Design

Extensible Pre-Authentication in Kerberos (EPAK) serves as a model for extending

Kerberos to support a variety of authentication schemes. If large security providers

such as Microsoft were to adopt EPAK, many businesses would benefit by having

the ability to plug in different authentication protocols, including those that would

enable Kerberos to operate as an open system.

EPAK extends the initial authentication phase of Kerberos, just like many pre-

vious Kerberos extensions. Since only the initial authentication phase is changed,

the security infrastructure built up around Kerberos can remain unchanged.

Unlike existing Kerberos extensions, EPAK enables the integration of many au-

thentication schemes into Kerberos without further modification to Kerberos imple-

mentations.

3.1 Goals

The design goals for EPAK are to:

• Allow extensible integration of authentication systems

• Enable attribute-based authentication in Kerberos

• Preserve the existing security properties of Kerberos

• Improve efficiency and usability

• Provide scalable account provisioning for outsiders

• Maintain backwards compatibility with Kerberos

11
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KDC

AS TGS

Cl ien t A p p l .  S e r v e r

PAS

Figure 3.1: The EPAK protocol adds a preliminary phase to Kerberos, phase 0,

where the client requests and obtains an authentication-granting ticket (AGT) and

a session key Kc,as from the Pre-Authentication Server (PAS). The AGT is then

supplied as padata to the AS in step 1a. Step 1b contains a normal AS-REP

with the exception that the session key Kc,tgs is encrypted with Kc,as instead of a

password-derived key. Phases 2 and 3 are left unchanged.

3.2 Architecture

EPAK naturally extends Kerberos by adding a single phase similar to the existing

phases (see Figure 3.1). The EPAK framework enables phase 1 of Kerberos to suc-

ceed after a Pre-Authentication Client (PAC) authenticates to a Pre-Authentication

Server (PAS) using the desired authentication scheme. The PAS determines which

users can authenticate to which principals. If authentication succeeds, the PAS re-

turns an authentication-granting ticket (AGT) used as padata in the AS request,

and a randomly-generated session key for decrypting the AS reply.

Since an AGT only needs to remain valid long enough to perform an AS request

12



3.2. ARCHITECTURE

to obtain a TGT, the AGT is, by default, non-renewable and short-lived.

PAS Realms Kepak is a randomly-generated key known only to the PAS and AS.

By encrypting the AGT with Kepak the PAS ensures that only the AS can decrypt it.

To provide load balancing and fault tolerance, the PAS may be distributed among

multiple machines.

A Kerberos administrator can also outsource pre-authentication by allowing

trusted parties to host their own PAS. In this setup, each PAS has its own shared

key with the AS, similar to cross-realm authentication. Each party controlling a

PAS is known as a PAS realm (see Figure 3.2).

To prevent name conflicts and maintain an arms-length trust relationship with

each PAS realm, the Kerberos administrator specifies an ACL for each PAS realm,

indicating all principals the PAS realm is permitted to authenticate. The AS de-

termines in phase 1 which PAS issued the AGT and enforces the corresponding

ACL.

Outsourcing the PAS offloads principal management in addition to computa-

tional work and network traffic. It also allows heterogeneous PAS’s supporting dif-

ferent authentication mechanisms within the same Kerberos realm. These features

increase scalability, but similar to cross-realm authentication, the tight relationship

and shared keys limit scalability.

Principal Mapping As mentioned earlier, the PAS is responsible for mapping

users to Kerberos principals. In other words, it must implement a strategy for

determining which users are allowed to authenticate as which principals.

A straightforward strategy is a 1-1 mapping from users to principals. For ex-

ample, if users are identified by an email address, a formula can be used to convert

13
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AS

Cl ien t

PAS1

PAS2

Cl i en t

Figure 3.2: Pre-authentication can be distributed to multiple PAS’s, where each

PAS constitutes a PAS realm. Within a single Kerberos realm, a client may perform

pre-authentication with any trusted PAS to obtain an AGT.

email addresses into corresponding principals, e.g., john@gmail.com can authenti-

cate as john gmail com@REALM. The PAS may utilize an ACL for valid users, or

simply rely on the AS to reject principals that do not exist.

Although this approach is more open than traditional Kerberos, which requires

a shared secret (user password) to be maintained by the Kerberos server, it remains

a closed system since the AS maintains a tight relationship with the PAS in pro-

visioning a principal for each valid user. Even when the PAS is distributed among

many trusted parties, this limitation still remains.

A rule-based approach like 1-1 mapping is not dynamic enough to allow Kerberos

to scale to a large number of outsiders because users are still provisioned individually.

A more scalable alternative that transitions Kerberos to an open system is to map

a group of users to a Kerberos principal without requiring that each individual user

be provisioned in the local Kerberos realm in advance. Two such strategies are

described below.

14
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The first strategy, an m-1 mapping, provides a coarse-grained approach to map

users to a single principal. For instance, all users at partner companies can be

mapped to a guest principal, e.g., guest@REALM. This dynamic arrangement pro-

vides increased scalability because the local Kerberos administrator manages only

a single principal and is shielded from all changes to the user population at partner

companies. However, mapping users to a single principal is not flexible because all

outsiders are treated uniformly.

The second strategy, an m-n mapping, is a fine-grained approach that provides

a balance of flexibility and scalability. An attribute-based ACL, policy file, or other

technique specifies which groups of users can authenticate as which principals. Prin-

cipals can be defined to represent large groups (e.g., companyC@REALM, part-

ner@REALM).

Combining this m-n mapping technique with multiple PAS realms produces an

even finer-grained, adaptable solution for user management. Consider the scenario

presented in Chapter 1. Company A avoids having to manage accounts for each

employee of Company B by grouping them all together (e.g., *@companyB.com).

Although dynamic and scalable, this configuration may be too coarse-grained for

Company A’s needs. To enable a more fine-grained setup, Company A could entrust

Company B to run a PAS that authenticates users to specific principals, such as

developerB, customerB, and salesB. This does not preclude Company A from

continuing to use a coarse-grained approach with Company C.

3.3 Protocol

The EPAK protocol consists of four messages, defined in Table 3.1, where the

AGT is referred to as the epakticket. The EPAK protocol is divided into two

authentication phases: pre-authentication and AS authentication.

15



CHAPTER 3. EPAK DESIGN

EPAK Messages

EPAK-REQ epakvno ‖ epakdata

EPAK-REP epakvno ‖ epakdata ‖ pasrealm ‖ Kc,as ‖ EKepak
[epakticket]

EPAK-AS-REQ AS-REQ with padata=PA-EPAK-AS-REQ

EPAK-AS-REP AS-REP with padata=PA-EPAK-AS-REP

and Kc,tgs encrypted with Kc,as instead of Kc

PA-EPAK-AS-REQ epakvno ‖ pasrealm ‖ EKepak
[epakticket] ‖ EKc,as [epakauth]

PA-EPAK-AS-REP epakvno ‖ result

EPAK Message Elements

epakvno EPAK version = 1

epakdata cname ‖ crealm ‖ starttime ‖ endtime

epakticket Kc,as ‖ epakdata

epakauth cname ‖ crealm ‖ cksum ‖ cusec ‖ ctime

Kc,as Random session key generated by PAS

Kepak PAS’s key for encrypting epakticket

pasrealm PAS’s realm

cname Client name (principal name)

crealm Client realm (principal realm)

starttime Starting time of epakticket

endtime Expiration time of epakticket

cksum Checksum of AS request (excl. padata)

cusec, ctime Timestamp [22]

result Authentication error/success code

Table 3.1: EPAK Message Definitions

16
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AS

1b  1c

AC

0a 

PAS

PAC

(Credential Cache)

0c 1a 

 0b

Figure 3.3: The EPAK Protocol. Pre-authentication is performed in phase 0. As

the final step the AGT (epakticket) and session key Kc,as are stored in the client’s

credential cache. In the first step of phase 1, the credential is read from the cache

to be used as padata for AS authentication. Since the PAC and AC are separate

programs that communicate through the client’s credential cache, phase 0 can be

customized by EPAK-based protocols without further modification to phase 1.

Pre-Authentication Phase During pre-authentication, a valid client obtains an

EPAK-REP from the PAS. The pre-authentication protocol is shown in Figure 3.3,

phase 0:

a) The PAC sends an EPAK-REQ to the PAS to indicate the principal requesting

authentication. Additional messages may be exchanged in order for the client

to complete the authentication

b) The PAS responds with an EPAK-REP

c) The epakticket and session key Kc,as of the EPAK-REP are stored in the

17



CHAPTER 3. EPAK DESIGN

client’s credential cache under the server name epakt/REALM@pasrealm

The epakdata identifies the client, and specifies requested ticket start/end times.

The times are then restricted by the PAS in the EPAK-REP to enforce the maximum

lifetime.

The EPAK-REP must be communicated securely to protect the session key Kc,as

from eavesdroppers, and to prevent replay. TLS or another suitable mechanism may

be used to transmit the EPAK-REP securely.

The PAS verifies the EPAK version number and then performs any other steps

the particular authentication algorithm might require. The PAS must only return

an EPAK-REP if the user proves authenticity and is allowed to authenticate to the

desired principal.

The following rules for setting the ticket start/end times in the EPAK-REP given

the requested start/end time in the EPAK-REQ must be enforced by the PAS:

1. @(starttimereq)⇒ (starttimereply ← now)

2. (starttimereq < now)⇒ (starttimereply ← now)

3. (endtimereq > now + maxlife)⇒ (endtimereply ← now + maxlife)

If endtime is less than starttime, it could be treated as an error, but returning

the ticket is safe because such a ticket is invalid and would be useless when presented

to the AS.

AS Authentication Phase The protocol for AS authentication with EPAK pre-

authentication data is shown in Figure 3.3, phase 1:

a) The encrypted epakticket, pasrealm, and session key Kc,as are retrieved from

the client’s credential cache
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b) The client generates epakauth and sends an AS request with PA-EPAK-AS-

REQ as the padata

c) The server responds with an AS response with PA-EPAK-AS-REP as the

padata. The session key Kc,tgs is encrypted with the session key Kc,as

The epakauth included in the PA-EPAK-AS-REQ shows that the client has

recent knowledge of the session key in the epakticket. It serves the same purpose

as the Authenticator used in phase 2 and 3 [22].

If authentication fails, the PA-EPAK-AS-REP contains an error result value and

the encrypted part of the AS reply is set to unusable random data. Alternatively, a

Kerberos error message may be returned.

The pasrealm indicates which PAS issued the epakticket, and is used to look

up the appropriate EPAK key needed to decrypt the ticket. It is also used when

multiple PAS realms are involved to look up a corresponding ACL.

The following rules of verification of the PA-EPAK-AS-REQ must be enforced

by the AS before returning a successful AS reply with an appropriately encrypted

session key:

1. epakvno must be a valid version number

2. epakauth must be valid as in RFC 4120

3. epakticket realm must match the realm of the AS

4. epakticket starttime ≤ now

5. epakticket endtime > now

6. epakticket principal must exist in Kerberos database
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7. epakticket and AS request principals must match

8. epakticket principal must appear in ACL (if used)

Rule 6 maintains harmony with current Kerberos implementations, and its ab-

sence would necessitate dynamic creation of principals, or modifications to later

phases of Kerberos to handle unknown principals. Such changes would have far-

reaching effects into the systems built around Kerberos.

The lifetime of the TGT is limited so as not to extend beyond the lifetime of the

epakticket.

3.4 EPAK Benefits

EPAK benefits both Kerberos and the authentication systems that can now be

incorporated into Kerberos.

EPAK improves Kerberos by facilitating the incorporation of new authentication

schemes, which can be added without further modification to the Kerberos client

(e.g., kinit) or AS (e.g., kdc). EPAK also provides a clear separation between the

pre-authentication and authentication phases, thus enabling loose integration of

diverse systems.

Incorporating attribute-based authentication schemes into Kerberos enables it to

operate as an open system and consequently allows services built on Kerberos to be

manageably expanded to larger communities. Also, when Kerberos operates as an

open system the need for a shared key between the AS and each client is eliminated.

Moreover, the risk of compromise to the client keys central repository is removed.

Authentication systems with complex interactions, or long execution times, ben-

efit from the SSO feature of Kerberos as authentications occur only once per session.

Only having to authenticate once per session limits these potential performance bot-

tlenecks.
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EPAK lowers the barriers to integrating alternative authentication mechanisms

into Kerberos, allowing newer or lesser-known schemes to enjoy a faster adoption

rate.

3.5 Backward compatibility

As with other Kerberos extensions, a Kerberos server with EPAK still supports

normal Kerberos password-based authentication.

A Kerberos server without EPAK support fails gracefully with a “pre-auth type

not supported” error when it receives an EPAK authentication request.

3.6 Limitations

One drawback of EPAK is that it requires at least one extra round of communi-

cation. The PAC must communicate with the PAS to obtain the epakticket. Other

Kerberos extensions, such as PKINIT [33], can provide pre-authentication data in

the AS request without needing a previous phase.
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Chapter 4 — Open Systems in EPAK

To demonstrate the generality and flexibility of EPAK, we have chosen two authen-

tication systems to integrate into Kerberos: Simple Authentication for the Web

(SAW) and trust negotiation. Both SAW and trust negotiation build on the EPAK

framework to enable Kerberos to operate as an open system.

4.1 SAW

Simple Authentication for the Web (SAW) [28] leverages email (or other personal

messages, e.g., text and instant messages) to authenticate users. SAW significantly

improves upon the basic technique employed by the “Forgot your password?” link

common to many web sites.

In SAW, users must demonstrate their ability to retrieve two short-lived, single-

use Authentication Tokens (see Figure 4.1). If a user-supplied email address is

authorized, a random secret, AuthTokencomplete, is generated and split into two

shares as follows:

AuthTokencomplete ⊕ AuthTokenemail = AuthTokenuser

where AuthTokenemail is another randomly generated value. AuthTokenuser is re-

turned directly to the user over the secure link used to initiate the authentication

process (e.g., HTTPS) while AuthTokenemail is emailed. If the user returns both

tokens then the authentication is successful.

Since the AuthTokenuser is returned over a secure link, passively observing the

AuthTokenemail is worthless.

Vulnerability to Active Impersonation By submitting a victim’s email ad-

dress to a site an attacker obtains a valid AuthTokenuser. Consequently, by observ-
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Figure 4.1: The SAW protocol. Based on the user’s email address, submitted in

(1), a server distributes two authentication tokens. AuthTokenuser (2a) is returned

directly to the user while AuthTokenemail (2b) is emailed. Both tokens must be re-

turned (3) to successfully authenticate. Each login attempt involves its own unique,

short-lived, single-use tokens.

ing the victim’s incoming email messages, the attacker acquires the corresponding

AuthTokenemail and is able to authenticate as the victim. This is called an active

impersonation attack.

SAW’s threat analysis argues that SAW provides an acceptable level of risk,

even in light of this attack, because sites that employ email-based password resets

(EBPR) are also susceptible to a similar attack in which an attacker requests a

password reset for the victim and then observes the resulting email message sent by

the site. The prolific adoption of EBPR indicates that these risks are manageable.

One-Round SAW Step 3 of SAW is eliminated in one-round SAW by setting

AuthTokencomplete, normally a random value, to the item requested by the user.

Since only authentic users can reconstruct AuthTokencomplete, only those users will

be able to obtain the item. As the token splitting used by SAW creates two shares

of equal size to the secret it splits, it is advised for a large item to encrypt the
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item, split the encryption key, and then deliver the encrypted item with one of the

encryption key shares.

Group-Based SAW SAW is often used in closed systems, i.e., an ACL specifies

all authorized email addresses. This works well for sites (e.g., forums or photo-

sharing) willing to provision accounts for each user.

Unfortunately, this one-to-one specification of users to permissions is insufficient

for open systems. For example, this approach requires Business A, from the scenario

described in Chapter 1, to maintain an ACL containing some or all of the employee

emails of its affiliate, Company B.

For more flexibility, SAW can be modified to use ACLs that contain wildcards

or regular expressions. This is known as group-based SAW. With this enhance-

ment, Business A can specify that anyone with a Company B email address (e.g.,

*@companyB.com) is allowed access.

4.2 SAWK Näıve Approach

A näıve approach to integrating SAW into Kerberos would be to send an email

address in the AS request, inside the padata of type PA-SAW-AS-REQ. The AS

would reply with the AuthTokenuser and the session key Kc,tgs encrypted with the

AuthTokencomplete, and would email AuthTokenemail to the user, who would be able

to reconstruct AuthTokencomplete and unlock the session key.

As with most Kerberos extensions, the adoption of SAW with this näıve approach

would be impeded until it was approved and integrated into popular Kerberos im-

plementations. Before integration, a patch file would have to be maintained, and

Kerberos would have to be built manually to enable this functionality.

In addition, this approach provides no mechanism for securing AuthTokenuser,

making it susceptible to eavesdropping.
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Figure 4.2: The SAWK protocol uses EPAK to enable SAW authentication in Ker-

beros. The SAWK Server (SAWK-S) and SAWK Client (SAWK-C) embody the

PAS and PAC, respectively. In phase 0, one-round, group-based SAW authentica-

tion is used to obtain an EPAK-REP. The resulting ticket and session key are stored

in the credential cache, after which phase 1 (AS authentication) is performed.

4.3 SAWK Protocol

Simple Authentication for the Web in Kerberos (SAWK) is an EPAK-based

protocol that enables flexible, email-based authentication in Kerberos, and avoids

the limitations of the näıve approach.

Pre-Authentication Phase The protocol for SAWK pre-authentication is shown

in Figure 4.2, phase 0:

a) The SAWK-C sends an EPAK-REQ and email address to the SAWK-S

b) If the address is allowed to authenticate as the principal specified in the

EPAK-REQ, the SAWK-S responds with AuthTokenuser and an EPAK-REP
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encrypted with the random AuthTokencomplete

c) AuthTokenemail is emailed to the specified address and is used to reproduce

AuthTokencomplete and decrypt the EPAK-REP

d) The epakticket and session key Kc,as of the EPAK-REP are stored in the

client’s credential cache

The communication between the SAWK-C and SAWK-S in steps 0a and 0b is

performed over a secure channel (e.g., TLS) to thwart eavesdropping and imperson-

ations of the SAWK-S.

SAWK uses group-based SAW for a flexible mapping of email addresses to prin-

cipals. The addresses are specified as regular expressions, which provide an m-n

mapping with a high level of scalability.

AS Authentication Phase The protocol for AS authentication following SAWK

pre-authentication is shown in Figure 4.2, phase 1. This phase is identical to phase

1 of EPAK. As previously mentioned, EPAK-based authentication protocols can be

integrated into Kerberos without further modification to the Kerberos client and

server programs.

4.4 Trust Negotiation

Trust negotiation [29, 1] is a protocol for establishing trust between strangers

with no preexisting relationship. Automated trust negotiation works by exchanging

digital credentials until enough trust has been established to gain access to a service

or resource. If each party has the required credentials, and their policies allow them

to be shown to each other, then trust negotiation will succeed and the resource will

be granted.
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Digital credentials used for trust negotiation serve the same purpose as paper

credentials one might carry in a wallet, such as a driver’s license, insurance card, or

a student ID. Unlike most authentication systems, which are identity-based, trust

negotiation is attribute-based, which provides the flexibility to authenticate based

on credential properties. For example, Bob can use his digital driver’s license to

prove that he is old enough to register for a community college.

An access control policy defines what credentials must be supplied before access

to a resource is granted. Policies can also be used to protect credentials, because

credentials themselves may be sensitive. For instance, a credit card credential can be

protected so that it won’t be disclosed unless the other party has a Better Business

Bureau credential.

4.5 TNK Protocol

Trust Negotiation in Kerberos (TNK) is an EPAK-based protocol that uses trust

negotiation to authenticate clients.

Pre-Authentication Phase The protocol for TNK pre-authentication is shown

in Figure 4.3, phase 0:

a) The TNK-C sends an EPAK-REQ to the TNK-S

b) Trust negotiation is performed until the policy has been satisfied, or trust

negotiation fails

c) If the policy is satisfied, an EPAK-REP is returned

d) The epakticket and session key Kc,as of the EPAK-REP are stored in the

client’s credential cache
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Figure 4.3: The TNK protocol uses EPAK to enable trust negotiation in Kerberos.

The TNK Server (TNK-S) and TNK Client (TNK-C) embody the PAS and PAC,

respectively. In phase 0, trust negotiation is performed to obtain an EPAK-REP.

The resulting ticket and session key are stored in the credential cache, after which

phase 1 (AS authentication) is performed.
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The principal name in the EPAK-REQ serves as the role the user must satisfy

before the EPAK-REP is disclosed. By its very nature, trust negotiation provides a

scalable, attribute-based mapping of users to principals.

The communication between the TNK-C and TNK-S is performed over a secure

TLS connection to protect potentially sensitive credentials (step 0b), provide server

authentication, and to prevent an eavesdropper from viewing the session key Kc,as

in the EPAK-REP (step 0c).

AS Authentication Phase The protocol for AS authentication after TNK pre-

authentication is shown in Figure 4.3, phase 1. This phase is identical to phase 1 of

EPAK.

4.6 TNK vs PKINIT

PKINIT [33] is a Kerberos extension that uses public-key cryptography for initial

authentication in Kerberos. Similar to TNK, only phase 1 of the Kerberos protocol

changes. But unlike TNK, PKINIT authentication is handled completely in the AS

request and AS reply, and does not require additional rounds.

In PKINIT, the user sends a certificate to the AS. After verifying the validity of

the certificate (signed by a trusted CA and not revoked or expired), the AS responds

with the TGT and session key. The session key is encrypted with the user’s public

key extracted from the certificate, instead of a password-derived key. PKINIT also

allows a key generated through a Diffie-Hellman key exchange to be used for this

encryption.

PKINIT relies on trusted CAs to issue certificates for users. The principal names

are usually specified directly in the certificates, creating a one-to-one mapping be-

tween certificates and principals. This limits PKINIT’s ability to operate as an

open system, since the CAs must work directly with the Kerberos administrator in
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managing principals.

PKINIT can function as an open system if the AS is modified to use a differ-

ent binding mechanism from certificate properties to Kerberos principals. A nice

approach would be to modify PKINIT to use a form of credential mapping to map

large groups to principal names. For example, the subject name of the certificate

maps to a principal name via regular expression mapping, similar to the SAWK ACL

list. Other certificate properties could also be involved in the mapping to provide

an even more flexible, attribute-based solution, similar to TNK.
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Chapter 5 — EPAK Implementation

The flow of messages in EPAK is shown in Figure 5.1. EPAK is implemented as a

patch to Heimdal Kerberos [12], and this section is geared towards those familiar

with Kerberos implementations.

Changes to the client include modifying kinit to support EPAK, and adding

helper programs genpatrequest and savepat. Changes to the server include mod-

ifying kdc to support EPAK, and adding the helper program genpatreply.

genpatrequest This utility program is used by the PAC to generate an EPAK-

REQ. The principal name is specified (if different from the user’s name), as well as

the desired ticket lifetime and start time.

Usage: genpatrequest [-l time] [-s time] file

[principal]

genpatreply This utility program is used by the PAS to generate an EPAK-REP

from an EPAK-REQ. An EPAK-REP is only generated if the EPAK-REQ is valid.

The rules specified in Section 3.3 are enforced. The existence of the client principal

is not enforced because:

1. The PAS may not have access to the Kerberos database, especially if the PAS

is running on a different machine.

2. The principal name will be verified later, by the kdc when it receives the AS

request.
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Figure 5.1: EPAK Implementation. The kinit and kdc programs support

EPAK. The new helper programs genpatrequest, genpatreply, and savepat cre-

ate and process the EPAK-REQ and EPAK-REP messages. The PAC invokes

genpatrequest to obtain an EPAK-REQ (steps 1-2) that is sent to the PAS (step

3). Additional steps are then performed, as necessary, to authenticate the user. The

PAS generates an EPAK-REP by invoking genpatreply (steps 4-5) and transmits

it securely (e.g., TLS) to the PAC (step 6) to be stored in the client’s credential

cache (step 7). AS authentication is then performed (steps 8-10).
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genpatreply must be run by a privileged user with access to the EPAK key

(Kepak) stored in the krb5.keytab file. Kepak is used to encrypt the epakticket in

the EPAK-REP.

Usage: genpatreply requestfile replyfile

savepat To save an EPAK-REP to the client credential cache, the PAC uses the

savepat utility. The epakticket, session key Kc,as, and pasrealm from the EPAK-

REP are formatted into a krb5 creds which is then stored into the credential cache

with krb5 cc store cred(). The credential can be viewed by running the existing

klist program.

Usage: savepat [-c ccache] replyfile

kinit The kinit program supports a new option, --epak. When run with this

option, instead of doing password-based authentication, it performs EPAK authen-

tication. The epakt/REALM service credential, which holds an epakticket and session

key Kc,as, is read from the credential cache. If it does not exist or is expired, kinit

aborts with an error. An epakauth is created and encrypted with Kc,as, and is sent

along with the epakticket in a padata of type PA-EPAK-AS-REQ to the AS. If

the AS reply includes a PA-EPAK-AS-REP indicating success, kinit uses Kc,as to

decrypt the encrypted part of the AS reply.

kdc The kdc program, which performs the function of the AS, supports EPAK by

recognizing and responding appropriately to PA-EPAK-AS-REQ padata. Kepak is

used to decrypt the epakticket, and the rules specified in Section 3.3 are enforced,

including verification of epakauth, principal name, and ticket times. The AS reply

includes the TGT and session key Kc,tgs like normal, but Kc,tgs is encrypted with
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Figure 5.2: SAWK Implementation. Pre-authentication is performed (steps 1-

9) by running sawkinit. The SAWK Client (sawkc) and SAWK Server (sawks)

communicate securely over TLS. sawkinit invokes genpatrequest to create an

EPAK-REQ (steps 1-2) that is passed to the sawkc (step 3). The EPAK-REQ

is then transmitted to the sawks (step 4) and is used by genpatreply to create

an EPAK-REP (step 5-6). The EPAK-REP is encrypted with AuthTokencomplete

and returned to the sawkc along with AuthTokenuser (step 7a). AuthTokenemail is

emailed to the user and retrieved by the fetchtoken program (step 7b), invoked by

sawkc. AuthTokenemail is combined with AuthTokenuser to to decrypt the EPAK-

REP, which is then returned to sawkinit (step 8) and stored in the credential cache

(step 9). AS authentication is then performed (steps 10-12).
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employeeB@MYCOMPANY = ^.*@companyB.com$

employeeC@MYCOMPANY = ^.*@companyC.com$

partner@MYCOMPANY = ^.*@company(B|C).com$

guest@MYCOMPANY = ^.*@.*$

Table 5.1: Example SAWK-S ACL. Regular expressions map email addresses to

principals. For example, john@companyB.com can authenticate as either employ-

eeB, partner, or guest.

Kc,as instead of a Kc. A PA-EPAK-AS-REP is also included in the reply.

A new option, epak ticket lifetime, can be specified in the krb5.conf to indi-

cate the maximum lifetime of an EPAK ticket. If not specified, this value defaults

to eight hours.

5.1 SAWK Implementation

The SAWK implementation is shown in Figure 5.2.

sawk This small script runs sawkinit followed by kinit --epak, to perform pre-

authentication and AS authentication in one command.

sawkinit The sawkinit program is a small script that launches genpatrequest,

sawkc, and savepat. The ticket times, if specified, are forwarded to genpatrequest,

and the credential cache name is forwarded to savepat.

A configuration file, sawkinit.conf, specifies the location of the three programs

mentioned above. It also specifies the hostname and port of the machine running

the SAWK-S.

Usage: sawkinit [-l time] [-s time] [-c ccache]

[principal]
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sawkc and sawks These two programs, implemented in Java, communicate to

perform one-round, group-based SAW authentication. The sawkc and sawks com-

municate over TLS to protect the AuthTokenuser returned in step 7a.

The email address, specified in sawkc.properties, is sent along with the EPAK-

REQ in step 4.

In step 7a, the sawks responds with three items: the AuthTokenuser, an EPAK-

REP encrypted with AuthTokencomplete, and a transaction ID that helps identify

the email of step 7b. To prevent leaking valid/invalid addresses, an authentication

failure is handled by returning a random value in place of the EPAK-REP.

Valid addresses and their mappings to principal names are specified in the

sawks.acl file, which uses regular expressions to group email addresses. An ex-

ample ACL is shown in Table 5.1.

The helper program fetchtoken in step 7b retrieves the AuthTokenemail, which

is XOR-ed with AuthTokenuser to produce AuthTokencomplete and decrypt the EPAK-

REP.

Usage: sawkc requestfile replyfile [host] [port]

fetchtoken This helper program, written in C, polls the email provider to obtain

the AuthTokenemail. The email to retrieve is identified by a transaction ID and the

SAWK-S hostname (to help prevent phishing attacks).

The email subject line contains the transaction ID, hostname, and AuthTokenemail

to facilitate quick retrieval. The AuthTokenemail is saved to a specified token file to

be read by sawkc.

Account properties for email retrieval are specified in a configuration file named

fetchtoken.conf. These properties include username, email protocol, mail server,
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and timeout. Valid email protocols include POP3 and IMAP, optionally over TLS.

Usage: fetchtoken trans id sawks tokfile

5.2 TNK Implementation

The TNK implementation is shown in Figure 5.3.

tnk This script runs tnkinit followed by kinit --epak, to perform both pre-

authentication and AS authentication in one command.

tnkinit The tnkinit program is a small script that launches genpatrequest,

tnkc, and savepat. The ticket times, if specified, are forwarded to genpatrequest,

and the credential cache name is forwarded to savepat.

A configuration file, tnkinit.conf, specifies the location of the three programs

mentioned above. It also specifies the hostname and port of the machine running

the TNK-S.

Usage: tnkinit [-l time] [-s time] [-c ccache]

[principal]

tnkc and tnks These two Java programs perform trust negotiation to obtain the

resource “Authenticated as principal X”. Policy files dictate what credentials must

be released to obtain this resource. The tnkc and tnks communicate over TLS to

protect potentially sensitive credentials.

The EPAK-REQ is sent in step 4, trust negotiation is performed in step 7, and

the EPAK-REP is returned in step 8 if trust negotiation succeeds.

Usage: tnkc requestfile replyfile [host] [port]
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Figure 5.3: TNK Implementation. Pre-authentication is performed (steps 1-10) by

running tnkinit. The TNK Client (tnkc) and TNK Server (tnkc) communicate

securely over TLS. tnkinit invokes genpatrequest to create an EPAK-REQ (steps

1-2) that is passed to the tnkc (step 3). The EPAK-REQ is then transmitted to

the tnks (step 4) and is used by genpatreqply to create an EPAK-REP (step 5-

6). Trust negotiation is performed between the tnkc and tnks (step 7). If trust

negotiation succeeds, the EPAK-REP is transmitted (step 8) to the tnkc and is

returned to sawkinit (step 9) and stored in the credential cache (step 10). AS

authentication is then performed (steps 11-13).
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5.3 Practice and Experience

Even with documentation for the Heimdal API, the barrier to entry for modifying

Heimdal is high, requiring a detailed understanding of its data structures and the

functions that operate on them. A proficiency in C and in the automake build

system is also required.

The stand-alone programs genpatrequest, genpatreply, and savepat help

EPAK authentication systems work with EPAK-REQ and EPAK-REP messages

without the need to link against the Heimdal krb5 library. To alleviate the diffi-

culty of interprocess communication, these programs read and write to files, with

the filenames passed as command-line parameters.

Working with ASN.1 presents a small challenge. The EPAK-REQ and EPAK-

REP messages are, for the most part, handled by the utility programs mentioned

above, which use the Heimdal ASN.1 implementation. However, both the SAWK-S

and TNK-S need to parse the principal name out of the EPAK-REQ. This is solved

by using an ASN.1 Java library, but a more favorable solution might be to create a

utility program to extract the name.

While testing the performance of TNK authentication, an anomaly was dis-

covered. The execution time for trust negotiation varied wildly from a few sec-

onds to almost a minute. The culprit was a random-number generator that often

blocked when more entropy was required. To solve this, Java was reconfigured to

use /dev/urandom instead of /dev/random. Even though /dev/random provides

more assurance of truly random numbers, /dev/urandom still provides a sufficient

amount of unpredictability.
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Chapter 6 — Threat Analysis

Kerberos has many important security properties that make it resistant to attacks

(see Section 2.2). In general, it provides authenticity for clients and servers, integrity

of message data, and confidentiality of secrets, e.g., session keys. The last phase of

Kerberos can be used to set up a shared secret between the client and application

server to provide confidentiality for subsequent communication.

Although Kerberos is not impervious to all forms of attacks, time has proven it

to be effective at ensuring a high level of security.

EPAK aims to retain the confidentiality, integrity, and authenticity properties of

Kerberos by extending Kerberos in a natural way. By extending phase 1 with the

standard padata mechanism, and leaving phase 2 and 3 unchanged, we reduce the

opportunity for new flaws.

Phase 0 (pre-authentication) reuses the well-established Kerberos concept of

sending a request to obtain a ticket and session key, but it also introduces a new

attack vector that must be examined for each particular authentication scheme. For

example, SAWK and TNK inherit the security risks of SAW and trust negotiation,

respectively. In addition, SAWK and TNK rely on the security of TLS. The de-

sign and use of the EPAK-REQ and EPAK-REP messages in phase 0 must also be

analyzed.

The epakticket and epakauth are always communicated in encrypted form. The

epakticket, just like all Kerberos tickets, is opaque to the client. It is encrypted

with Kepak, a shared secret between the PAS and the AS. The epakauth, created by

the client, is protected with the session key Kc,as so that it can only be viewed by

the AS. It is short-lived and assures that the client presenting the ticket is the one
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who was issued the ticket.

The epakticket cannot be successfully modified by a client to authenticate as a

different principal. Like all Kerberos tickets, modifying the epakticket results in a

corrupt ticket which, if submitted, will be rejected by the server due to data integrity

failure (invalid HMAC).

A client should not be allowed to obtain a ticket with an arbitrary lifetime. The

PAS restricts the ticket lifetime by using the genpatreply program, which enforces

the rules specified in Section 3.3.

The PAS authenticates valid users only. To do so, it only returns an EPAK-

REP after the client has proven its authenticity, or it returns the EPAK-REP in

an encrypted form such that the client must prove its authenticity to obtain the

decryption key.

The PAS is responsible for enforcing the security of the EPAK-REP, to prevent

replay and to prevent an eavesdropper from gaining access. Only the session key

Kc,as of the EPAK-REP needs to be encrypted, but in our implementations of SAWK

and TNK, the entire EPAK-REP is encrypted within TLS.

When TLS is used to communicate between the PAC and PAS, it provides server

authentication and protects against attacks like DNS spoofing. With TNK, addi-

tional server authentication may also be performed as part of the trust negotiation.

If the EPAK-REQ is not communicated securely, an eavesdropper can replay

it. However, an attacker must still prove his authenticity before he can obtain an

EPAK-REP from the PAS.

Access to a client’s credential cache enables impersonation. Kerberos tickets

can be used multiple times and therefore require persistent storage. Both system

administrators and those with physical access to a client’s machine can impersonate
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a user during the lifetime of a valid ticket. An epakticket is non-renewable, so it

presents less risk than other Kerberos tickets. This risk is also mitigated by Kerberos

implementations that store credentials in memory instead of on disk.

The padata of phase 1 (PA-EPAK-AS-REQ) may be replayed by an attacker, but

is ineffective for two reasons. First, the epakauth has a short-lived timestamp that

provides a small window in which a replay may be performed. Second, even if the

replay is dispatched within the limited time frame, the AS reply is useless to an at-

tacker, who does not have the session key Kc,as disclosed during pre-authentication.

Kc,as is needed to decrypt the session key Kc,tgs in the AS reply, which is required

for phase 2.

An epakticket for one principal cannot be used to authenticate to a different

principal; an expired epakticket will also be rejected. The AS only accepts valid

tickets meeting the conditions delineated in Section 3.3.
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Chapter 7 — Related Work

Public key based Kerberos for Distributed Authentication (PKDA [25]) relieves

the load on a Kerberos KDC server by off-loading the authentication process to

the application servers. Clients do not make contact with the KDC at all in this

protocol. In effect, it is meant as a replacement for SSL, but the authors themselves

admit that SSL is a ”formidable” solution.

PKINIT [33] is a Kerberos extension that moves Kerberos beyond password-

based authentication to public-key cryptography, which provides greater scalability.

EPAK builds on the ideas of PKINIT and other public-key extensions to enhance

Kerberos in similar ways.

Role-based Access Control (RBAC) [24] is an approach to mapping user identities

to roles within an organization. Users authenticate to known subjects, and then

subjects are assigned a role(s). All access control policies are specified in terms of

roles. This indirection provides scalability. As users enter and leave the system, the

role assignment rules change, but all access control policies remain the same. EPAK

leverages this same idea in the way it maps users to Kerberos principals. In its pure

form, RBAC is a closed system. The ideas presented in this paper can be applied

to RBAC systems to make them open.

GSSAPI [18] is a generic API for client/server authentication. Since most Ker-

beros distributions include a GSSAPI implementation, applications that support

GSSAPI also support Kerberos. Extending Kerberos with EPAK allows these ap-

plications to support many other authentication systems. Alternatively, an authen-

tication system could just implement the GSSAPI interface, but that would not

afford it the benefits of Kerberos (like SSO), and it could not be used with Kerber-
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ized services that do not support GSSAPI.
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Chapter 8 — Conclusions and Future Work

EPAK is an attractive framework that facilitates the incorporation of diverse au-

thentication schemes into Kerberos. EPAK clearly separates pre-authentication and

AS authentication to enable heterogeneous systems to be loosely coupled with Ker-

beros. Two concrete examples, SAWK and TNK, demonstrate the extensibility of

EPAK.

SAWK and TNK provide grouping techniques that allow Kerberos to scale to

a large number of people. Services can be provided to outsiders without manag-

ing individual user accounts. Large Kerberos deployments (e.g., Microsoft Active

Directory) could adopt EPAK to empower businesses with this rich environment.

Newer, lesser-known authentication systems can be integrated into Kerberos to

increase their usability and performance. New protocols can be adopted without

changing Kerberos-based security frameworks. Slow-running authentication schemes

can leverage Kerberos’ SSO capability.

A timing analysis of SAWK and TNK, and a comparison to other work on session

resumption is left as future work. In addition, more authentication protocols can

be incorporated into Kerberos using EPAK to identify and reaffirm its extensibility

and to guide future directions.

Standardization of EPAK is a worthy goal. The types PA-EPAK-AS-REQ and

PA-EPAK-AS-REP need to be assigned reserved values so they can be used without

risk of conflict. The submission of an RFC for EPAK is a natural next step for it

to become an IETF standard.

49



CHAPTER 8. CONCLUSIONS AND FUTURE WORK

50



References

[1] Elisa Bertino, Elena Ferrari, and Anna Cinzia Squicciarini. Trust-X: A Peer-

to-Peer Framework for Trust Establishment. IEEE Transactions on Knowledge

and Data Engineering, 2004.

[2] F. Butler, I. Cervesato, A.D. Jaggard, and A. Scedrov. A Formal Analysis

of Some Properties of Kerberos 5 using MSR. In IEEE Computer Security

Foundations Workshop, Jun 2002.

[3] Giovanni Di Crescenzo and Olga Kornievskaia. Efficient Kerberized Multicast

in a Practical Distributed Setting. Lecture Notes in Computer Science, 2001.

[4] Don Davis. Kerberos Plus RSA for World Wide Web Security. In Proceedings

of the First USENIX Workshop on Electronic Commerce, Jul 1995.

[5] T. Dierks and C. Allen. RFC 2246: The TLS Protocol Version 1.0, Jan 1999.

[6] I. Downnard. Public-Key Cryptography Extensions into Kerberos. Potentials,

IEEE, 21, Dec 2002.

[7] Armando Fox and Steven D. Gribble. Security on the Move: Indirect Authen-

tication using Kerberos. In Mobile Computing and Networking, 1996.

[8] Ravi Ganesan. Yaksha: Augmenting Kerberos with Public Key Cryptography.

In Network and Distributed System Security, 1995.

[9] Gary Ian Gaskell. Integrating Smart Cards into Kerberos. Master’s thesis,

Queensland University of Technology, Feb 2000.

51



REFERENCES

[10] Alan Harbitter and Daniel A. Menascé. Performance of Public Key-Enabled

Kerberos Authentication in Large Networks. In IEEE Conference on Security

and Privacy, Oakland, CA, May 2001.

[11] Alan Harbitter and Daniel A. Menascé. The Performance of Public Key-
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Appendix A — Source Code

Heimdal 0.8.1 source can be obtained from:

I http://www.pdc.kth.se/heimdal/

EPAK, SAWK, and TNK source can be obtained from:

I http://isrl.cs.byu.edu/epak/
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Appendix B — EPAK ASN.1 Definitions

EPAK DEFINITIONS ::=

BEGIN

IMPORTS Realm, Principal, KerberosTime, EncryptionKey, EncryptedData,

Checksum, krb5int32 FROM krb5;

epakvno INTEGER ::= 1 -- Current EPAK protocol version number.

-- EPAK Data: Main data including principal names, etc.

EPAKData ::= SEQUENCE {

-- Client principal (name and realm).

cprinc[0] Principal,

-- Client requests desired start and end time.

-- Server responds with granted start/end time.

-- (EPAKTicket is not renewable).

starttime[1] KerberosTime OPTIONAL,

endtime[2] KerberosTime

}

-- The EPAK Ticket is always encrypted by the EPAK key, aka K(epak).

EPAKTicket ::= SEQUENCE {

-- Session key K(c,as). (A random session key between client

-- and AS, generated by pre-authentication server).

key[0] EncryptionKey,

-- Main data including principal names, etc.

epakdata[1] EPAKData

}

-- The EPAK Authenticator helps prove that this client was recently

-- granted the EPAK Ticket. Serves same purpose as authenticators

-- in RFC 4120.

EPAKAuth ::= SEQUENCE {

cprinc[0] Principal,

cksum[2] Checksum OPTIONAL,

cusec[3] krb5int32,

ctime[4] KerberosTime
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}

-- EPAK Request: Used to obtain pre-authentication for a client

-- from a custom pre-authentication server.

EPAK-REQ ::= SEQUENCE {

-- EPAK Version number.

epakvno[0] INTEGER (-2147483648..2147483647),

-- Main data including principal names, etc.

epakdata[1] EPAKData

}

-- EPAK Reply: Response from pre-authentication server.

-- Contains pre-authentication data to be used in AS-REQ.

EPAK-REP ::= SEQUENCE {

-- EPAK Version number.

epakvno[0] INTEGER (-2147483648..2147483647),

-- Main data including principal names, etc.

epakdata[1] EPAKData,

-- Realm of pre-authentication server (PAS)

pasrealm Realm,

-- Session Key K(c,as) that will be needed to decode the AS-REP.

-- (Random session key between client and AS).

key[3] EncryptionKey,

-- Encrypted EPAK Ticket, used as the pre-auth data in AS-REQ.

-- The ticket also contains the session key K(c,as).

epakticket[4] EncryptedData

}

-- EPAK pre-authentication data for AS-REQ.

PA-EPAK-AS-REQ ::= SEQUENCE {

-- EPAK Version number.

epakvno[0] INTEGER (-2147483648..2147483647),

-- Realm of pre-authentication server (PAS)

pasrealm Realm,

-- Encrypted EPAK Ticket, which is the pre-auth data.
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-- The ticket also contains the session key K(c,as).

epakticket[1] EncryptedData,

-- Encrypted EPAK Authenticator, to help prevent replay.

epakauth[2] EncryptedData

}

-- EPAK pre-authentication data for AS-REP.

PA-EPAK-AS-REP ::= SEQUENCE {

-- EPAK Version number.

epakvno[0] INTEGER (-2147483648..2147483647),

-- Server responds with 0 if pre-auth succeeded.

result[1] INTEGER (-2147483648..2147483647)

}

59



APPENDIX B. EPAK ASN.1 DEFINITIONS

60



Appendix C — EPAK Installation Guide

Build Heimdal Kerberos w/EPAK support

1. Download Heimdal Kerberos 0.8.1 (heimdal-0.8.1.tar.gz)

• MD5 = 7ff8c4850bce9702d9d3cf9eff05abaa

• See Appendix A

2. Download EPAK patch (epak.patch)

• See Appendix A

3. Install 3rd party tools and libraries

• yacc/bison

• flex

• xt library (libxt-dev)

• Berkeley DB (libdb3-dev)

• ncurses (libncurses5-dev)

4. Extract Heimdal Kerberos

• tar -zxvf heimdal-0.8.1.tar.gz

5. Apply EPAK Patch

• cd heimdal-0.8.1/

• patch -p1 < /path/to/epak.patch

6. Build Heimdal Kerberos with EPAK enabled

• ./configure --enable-epak --enable-epakdebug

– (--enable-epakdebug is optional)

• make

7. Install Heimdal Kerberos (optional)

• make install
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Set up /etc/krb5.conf on server and client

A sample krb5.conf is presented below. The epak ticket lifetime should be

set to a value similar to the other ticket lifetimes, such as eight or ten hours (36000

seconds).

[libdefaults]

ticket_lifetime = 36000

epak_ticket_lifetime = 36000

default_realm = SSHOCK.HOME

no-addresses = true

[realms]

SSHOCK.HOME = {

kdc = sshock.homeipx.net

admin_server = sshock.homeipx.net

default_domain = sshock.homeipx.net

}

[domain_realm]

sshock.homeipx.net = SSHOCK.HOME

[logging]

kdc = FILE:/var/log/krb5kdc.log

admin_server = FILE:/var/log/kadmin.log

default = FILE:/var/log/krb5lib.log

Set up Kerberos server

Note: These commands must be run as root (or using sudo).

1. Create heimdal directory

• mkdir /var/heimdal

• chmod 700 /var/heimdal

2. Create master key file

• cd heimdal-0.8.1/

• kdc/kstash --random-key

3. Initialize database
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• kadmin/kadmin -l

• init REALM

– where REALM is the name of your realm

– init will ask some questions about max ticket life

4. Add a principal for your username (optional)

• add username

5. Add one or more principal that will be used with pre-authentication

• add --random-key princname

6. Add epakt/REALM (EPAK Ticket) service principal

• Run these commands on the PAS machine

• kadmin/kadmin -l

• add --random-key epakt/REALM

• ext epakt/REALM

– This puts the key into the keytab file /etc/krb5.keytab.

– If KDC resides on a different machine, you must export the principal
to the keytab of the KDC as well.

7. To test ftp or telnet, add service principals and setup daemons

• add --random-key host/hostname

– where hostname is the domain name of the ftp or telnet server

– host/localhost may work fine for testing.

• ext host/myhostname

– This puts the key into the keytab file /etc/krb5.keytab.

– If ftp or telnet server is on a different machine than the KDC, you
must export the principal to the keytab on that machine as well.

• Setup telnetd and ftpd in your inetd.conf.

– Make sure your clients use kerberized telnet and ftp programs.

• If you didn’t install kerberos with make install, you must add a link
from /usr/heimdal/bin/login to heimdal-0.6.3/appl/login/login.

Download and setup SAWK and/or TNK for testing EPAK

See Appendix A for source code.
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